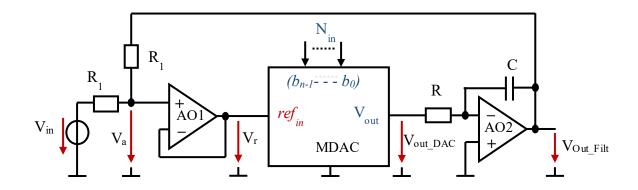

Exercices chapitre 8 – série 11

Enoncés

Exercice I

- Déterminer la tension de sortie minimum, respectivement maximum (Full Scale), et l'incrément de tension correspondant à 1 LSB (pas de quantification), pour un convertisseur N/A unipolaire à 8 bits, respectivement 10, 12 et 16 bits, avec une tension de référence 5 V.
- 2) Faire de même pour un CNA bipolaire, et trouver pour quelle combinaison de b_i la valeur de sortie est nulle.


Exercice II.

Les 'Multiplying DACs' ou MDAC sont des convertisseurs N/A qui acceptent une tension de référence V_r tant positive que négative, et qui effectuent l'opération suivante:

$$V_{out_DAC} = \frac{V_r}{2^n} N_{in}$$

Avec le nombre binaire N_{in} appliqué à l'entrée qui sera fonction de la valeur des bits b_i :

$$N_{in} = \sum_{i=0}^{n-1} b_i 2^i$$

On va chercher à établir la fonction de transfert $\underline{H}(\omega) = V_{Out_Filt}/V_{in}$ en fonction de la valeur numérique en entrée $N_{in.}$ (n bits).

On va procéder en plusieurs étapes.

- 1) Exprimez la tension V_a en fonction de V_{in} et V_{Out_Filt}
- 2) Déterminez la tension V_r en fonction de V_a . Comment justifier l'utilisation de AO1 ?
- 3) Déterminez l'expression de V_{Out_Filt} en fonction de V_{Out_DAC} .
- 4) Déterminez l'expression de V_{Out_Filt} en fonction de V_{in} .
- 5) Déterminer l'expression de fonction de transfert et de la fréquence de coupure (elle dépendra de N_{in} .)
- 6) Tracer le diagramme de Bode en amplitude pour les valeurs minimales et maximales de N_{in} . Concluez.